Two features of figure 1 require further consideration. The high-pressure belt does not cross the shore line in an east and west direction, but rather from a direction somewhat south of west to north of east. This is due to the presence of the continental HIGH over the United States in winter and to the greater northward movement of the thermal equator over the arid regions of northwestern Mexico and the southwestern States in summer than over the adjoining ocean. In the summer the so-called permanent High is central over the sea, but in winter is central over the land. So in the spring and fall there are periods in which the shift of position is taking place and in which the pressure is fairly uniform over the whole coast. There is, therefore, considerable uncertainty as to the exact location of the center line of the High during these periods. This probably accounts for the peculiar shape of curve I as drawn. If we look upon the permanent high as an actual high, central over the Rocky Mountain States in winter and over the Pacific in summer, the winds issuing from it along the coast would be expected to blow from the northwest in summer and from the southeast in winter. This may account for the southeast winds recorded at Eureka. Elsewhere the effect seems to be inappreciable. It may be noted, in passing, that while these curves were drawn without any reference to pressure charts, the positions of the belts as given here are in good agreement with the charts compiled from the data collected by the Weather Bureau.

A study has been made of the winds of the Mississippi

A study has been made of the winds of the Mississippi Valley, but without satisfactory results. The local topography seems to play a very large part in determining the prevailing wind directions at inland points. In conclusion some samples of the confusing and disconcerting sets of data met with are given in the following

table:

Table 1.—Prevailing winds during all months of the year.

Station.	Jan.	Feb.	Маг.	Apr.	Мау	June
St. Paul, Minn. Minneapolis, Minn. Duluth, Minn Sandy Lake Dam, Minn Keokuk, Iowa Sublett, Mo.	nw. sw. nw. nw.	nw. nw . ne. nw. nw. nw.	nw. nw. ne. nw. nw. sw.	nw. ne. ne. se. se. sw.	nw, ne. ne. e. s. sw.	se. s. ne. se. s. sw.
Station.	July	Aug.	Sept.	Oct.	Nov.	Dec.
St. Paul, Minn. Minnespolis, Minn. Duluth, Minn. Sandy Lake Dam, Minn. Keokuk, Iowa. Sublett, Mo.	ne. nw. s.	nw. s. ne. nw. s. sw.	se. s. ne. s. s.	se. s. ne. nw. nw.	se. nw. sw. nw. nw. nw.	nw. nw. sw. nw. nw.

Taken in pairs these stations are in practically the same latitude and are not more than fifty or so miles apart in an east and west direction.

DISCUSSION.

Prof. A. J. Henry suggested that in studies of this kind a consideration only of the prevailing wind might show apparent diversities which do not exist. For instance, in the Mississippi Valley, S. winds and NW. winds may blow for about the same number of hours. At one station the NW. may prevail by a narrow margin, while at a neighboring one the S. may prevail. The use of wind roses would eliminate such apparent discrepancies.

SOME DISCUSSIONS OF WIND OBSERVATIONS: DEESA AND KARACHI, INDIA.¹

By W. A. HARWOOD.

[Abstracted from review by R. De C. Ward, in Geogr. Rev., 1919, 8:281-282.]

These papers are excellent as examples of methods of discussing wind records, in addition to their value as contributions to the local climatology of subtropical northwest India. "The wind roses show very clearly the seasonal variation in wind direction at Deesa [over 200 miles NE. from the Gulf of Cutch] and the prevalence of winds from westerly and southerly points at Karachi [on the Sind coast at the extreme northwestern end of the Indus delta], except in December and January. Many other diagrams are also included."—En

EVAPORATIVE CAPACITY.1

By ROBERT E. HORTON, Consulting Engineer,

[Voorheesville N. Y.]

(Author's abstract.)

The object of this paper is to furnish data showing the relative evaporation rates under standard conditions at different localities throughout the United States. The term "evaporative capacity" is defined by the author as:

"The maximum rate of evaporation which can be produced by a given atmospheric environment from a unit area of wet surface exposed parallel with the wind, the surface having at all times a temperature exactly equal to that of the surrounding air."*

The evaporative capacity at 112 U. S. Weather Bureau stations has been determined from the meteorological normals of temperature, wind velocity, and humidity, by means of the author's evaporation formula. The coefficients in the evaporation formula were determined by experiments covering two years on a standard Weather Bureau evaporation pan. Maps are given showing evaporative capacities for day and night and summer and winter conditions, and tables are given showing monthly evaporative capacities and day and night time temperatures for each of the 112 stations. The application of the maps and data to problems in hydrology, water consumption by plants and agriculture, is discussed.

DEVICE FOR OBTAINING MAXIMUM AND MINIMUM WATER SURFACE TEMPERATURES.¹

By ROBERT E. HORTON, Consulting Engineer.

Figure 1 is a sketch of a wooden float, which I have found very satisfactory for the purpose of obtaining maximum and minimum water surface temperatures in standard Weather Bureau evaporation pans. In taking the readings, the minimum thermometer is simply tilted up on the pivoted support in the usual manner, to set it. The maximum thermometer is held in position on the pivot support by a wire hook marked A.

¹ A discussion of the anemographic observations recorded at Deesa from January, 1879, to December, 1804. A discussion of the anemographic observations recorded at Karachi from January, 1873 to December, 1894. With an introduction by G. T. Walker. Diagrs. Memoirs Indian Meteorol. Dept., vol. 19, pp. 275-335. Calcutta, 1915.

Presented before the American Meteorological Society, New York, Jan. 3, 1920.
*Cf. MONTHLY WEATHER REVIEW, Nov. 1919, 47:810 (1st col.).

¹ Presented before the American Meteorological Society, New York, Jan. 3, 1920.